BVP's: Shooting Methods for Linear functions

Consider the Linear two-point BUP:

$$
\left\{\begin{array}{l}
f\left(t, x, x^{\prime}\right) \\
x^{\prime \prime}=\widetilde{u(t)+v(t) x+w(t) x^{\prime}} \tag{*}\\
x(a)=\alpha, x(b)=\beta
\end{array}\right.
$$

Suppose that $u(t), v(t), \omega(t)$ are all cont, on $[a, b]$.

Now suppose we solve (as we do in shooting methods) the BVP modifying it to an IUP to ob ta the 2 soling: $x_{1}(t) \& x_{2}(t)$
where $\quad\left\{\begin{array}{l}x_{1}(a)=\alpha \\ x_{1}^{\prime}(a)=z_{1}\end{array} \quad\left\{\begin{array}{l}x_{2}(a)=\alpha \\ x_{2}^{\prime}(a)=z_{2}\end{array}\right.\right.$
Let $y(t)=\lambda x_{1}(t)+(1-\lambda) x_{2}(t)$
y solves $\left(y^{\prime \prime}=F\left(t, y, y^{\prime}\right)\right.$

$$
\left\{y(a)=\alpha, y^{\prime}(a)=\lambda z_{1}+(1-\lambda) z_{2}\right.
$$

Now, we simply pick λ so that we solve the $B V 1 P$, ie., $y(b)=\beta$

$$
\begin{aligned}
& y(b)=\lambda x_{1}(b)+(1-\lambda) x_{2}(b)=\beta \\
& \Rightarrow \lambda=\frac{\beta-x_{2}(b)}{x_{1}(b)-x_{2}(b)}
\end{aligned}
$$

So, to solve hear BVP's like (*)
(1) Solve the 2 IVP's (numerically)

$$
\begin{aligned}
& \left\{\begin{array}{l}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right) \\
x(a)=\alpha, x^{\prime}(a)=0
\end{array} \Rightarrow \begin{array}{l}
x_{1}\left(t_{i}\right) \\
i=1,2, \ldots
\end{array}\right. \\
& \left\{\begin{array}{l}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right) \\
x(a)=\alpha, x^{\prime}(a)=1
\end{array} \Rightarrow x_{2}\left(t_{i}\right)\right. \\
& i=1,2, \ldots
\end{aligned}
$$

(2) Set $\lambda=\frac{\beta-x_{2}(b)}{x_{1}(b)-x_{2}(b)}$
(3) The solution is approx. by

$$
y\left(t_{i}\right)=\lambda x_{1}\left(t_{i}\right)+(1-\lambda) x_{2}\left(t_{i}\right)
$$

BVP's: Shooting/ Newton's Method
Wait to solve

$$
\left\{\begin{array}{l}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right) \\
x(a)=\alpha, \quad x(b)=\beta
\end{array}\right.
$$

Instead we some

$$
\left\{\begin{array}{l}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right) \tag{1}\\
x(a)=\alpha, \quad x^{\prime}(a)=z
\end{array}\right.
$$

with solution $x_{z}(t)$ and error $\phi(z)=x_{z}(b)-\beta$

Snon-lnea equation in z \Rightarrow Newton's method!

$$
z_{n+1}=z_{n}-\frac{\phi\left(z_{n}\right)}{\phi^{\prime}\left(z_{n}\right)}
$$

Question
But we don't know $\phi(z)$ explicitly, how do we get $\phi^{\prime}(z)$?
Answer

$$
\phi(z)=x_{z}(b)-\beta \Rightarrow \phi^{\prime}(z)=\frac{\partial x_{2}(b)}{\partial z}
$$

where

$$
\left\{\begin{array}{l}
x_{z}^{\prime \prime}=f\left(t, x, x^{\prime}\right) \tag{2}\\
x_{z}(a)=\alpha, \quad x_{z}^{\prime}(a)=z
\end{array}\right.
$$

Great! But how do we get $\frac{\left.\partial x_{z}(b)\right)}{\partial z}$?
Answer
Differentiate (2) w.r.t. z !

$$
\left\{\begin{array}{l}
\frac{\partial x_{z}^{\prime \prime}}{\partial z}=\frac{\partial f^{0}}{\partial t} \cdot \frac{\partial t}{\partial z}+\frac{\partial f}{\partial x} \frac{\partial x}{\partial z}+\frac{\partial f}{\partial x} \cdot \frac{\partial x^{\prime}}{\partial z} \\
\frac{\partial}{\partial z} x_{z}(a)=0 \quad, \frac{\partial}{\partial z} x_{z}^{\prime}(a)=1
\end{array}\right.
$$

Rewriting this with $v:=\frac{\partial x_{z}}{\partial z}$

$$
\begin{align*}
& \text { can compute } \tag{3}\\
& \sim(a)=0, v^{\prime}(a)=1
\end{align*}
$$

This is an IVP, culled the first variational eq'n

So now, you (numerically) solve
(2) with initial cond $x^{\prime}(a)=z_{n}$
and wee this soln $\left(x_{z_{n}}\right)$ to
Solve $(3) \Rightarrow$ have $\phi^{\prime}\left(z_{\eta}\right)=v(b)$
\Rightarrow use in Newton's meth. to get z_{n+1} and repeat

Multiple Shooting
Wait to solve

$$
\left\{\begin{array}{l}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right) \\
x(a)=\alpha, \quad x(b)=\beta
\end{array}\right.
$$

\Rightarrow Solve two IVP's

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1}^{\prime \prime}=f\left(t, x_{1}, x_{1}^{\prime}\right) \\
x_{1}(a)=\alpha, x_{1}^{\prime}(a)=z_{1}
\end{array} \quad a \leq t \leq c\right. \\
& \& x_{2}^{\prime \prime}=f\left(t, x_{2}, x_{2}^{\prime}\right) \quad c \leqslant t \leqslant b \\
& x_{2}(b)=\beta, \quad x_{2}^{\prime}(b)=z
\end{aligned}
$$

\rightarrow for this one, we decrease t
Idea: Adjust z_{1}, z_{2} till the function $x(t)= \begin{cases}x_{1}(t) & t \in[a, c] \\ x_{2}(t) & t \in[c, b]\end{cases}$

Solves the problem with

$$
x_{1}(c)=x_{2}(c) \& x_{1}^{\prime}(c)=x_{2}^{\prime}(c)
$$

We can thus define the function

$$
\phi\left(z_{1}, z_{2}\right)=\left(\begin{array}{l}
x_{1}(c)-x_{2}(c) \gamma \\
x_{1}^{\prime}(c)-x_{2}^{\prime}(c)
\end{array} \rightarrow \rightarrow \text { both } \quad \rightarrow\right. \text { are fund }
$$ are functions of z_{1}, z_{2}

Want the non-lurea $f-\frac{t}{s}$

$$
\phi\left(z_{1}, z_{2}\right)=0
$$

\Rightarrow Newton's method (in 2 variables)
(1703)

Boundary Value Problems:
Finite Differences

Idea:. Discretize the t-axis

$$
\rightarrow t_{i}, i=1,2, \ldots, n
$$

- Use approximations to the derivatives

$$
\begin{aligned}
& \text { Recall }: x^{\prime}(t) \approx \frac{x(t+h)-x(t-h)}{2 h} \\
& O\left(h^{2}\right) \text { error } \\
& x^{\prime \prime}(t) \approx \frac{x(t+h)-2 x(t)+x(t-h)}{h^{2}} \\
&\left(h^{2}\right) \text { error }
\end{aligned}
$$

So now instead of solving

$$
\left\{\begin{array}{l}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right) \\
x(a)=\alpha, x(b)=\beta
\end{array}\right.
$$

we solve (with $t_{i}=a+i h, i=0, \ldots, n+1$

$$
\left.y_{i}=y\left(t_{i}\right)\right)
$$

$$
\left\{\begin{array}{l}
y_{0}=\alpha \\
\frac{1}{h^{2}}\left(y_{i+1}-2 y_{i}+y_{i-1}\right)=f\left(t_{i}, y_{i}, \frac{y_{i+1}-y_{i-1}}{2 h},\right. \\
y_{n+1}=\beta
\end{array}\right.
$$

Due to the function f, this is potentially a non-linear system of equations in $y=\left(y_{6} \cdots, y_{n+1}\right)$
(\Rightarrow can use methods from 170 B to solve it)

Finite Differences: The linear case When

$$
F\left(t, x, x^{\prime}\right)=n(t)+v(t) x+w(t) x^{\prime}
$$

we have

$$
\left\{\begin{array}{l}
y_{0}=\alpha \\
\frac{1}{h^{2}}\left(y_{i+1}-2 y_{i}+y_{i-1}\right)=u_{i}+v_{i} y_{i}+\frac{\omega_{i}}{y_{n}}\left(y_{i}-y_{i-1}\right) \\
y_{n+1}=\beta
\end{array}\right.
$$

(see next page)
$C^{\text {linear in } y}$

$$
\underbrace{\left(-1-\frac{1}{2} h \omega_{i}\right)}_{a_{i-1}} y_{i-1}+\underbrace{\left(2+h^{2} v_{i}\right)}_{d_{i}} y_{i}+\underbrace{\left(-1+\frac{1}{2} h \omega_{i}\right) y_{i+1}}_{c_{i}}=\underbrace{-h^{2} u_{i}}_{b_{i}}
$$

\Rightarrow we can write this in matrix form
as $\quad A \vec{y}=\vec{b} \quad \Leftrightarrow$

Tri-diagonal \Rightarrow Fast sol'n $(170 A)$
Theorem $=I f \sim(t)>0$ \& $u, v, \omega \in C[a, b]$,
then as $h \rightarrow 0$, solin of $A_{y}=b$ converges to soling of BUNP

Theorem on Existence \& Uniqueness of solns to BVP's:

$$
\left\{\begin{array}{l}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right) \\
c_{11} x(a)+c_{12} x^{\prime}(a)=c_{13} \\
c_{21} x(b)+c_{22} x^{\prime}(b)=c_{23}
\end{array}\right.
$$

has a unique solin on $[a, b]$ if
(I) $f, \frac{\partial f}{\partial t}, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial x^{\prime}}$ are contion

$$
D=[a, b] \times \mathbb{R}
$$

(2) $\frac{\partial f}{\partial x}>0,\left|\frac{\partial f}{\partial x}\right| \leqslant M,\left|\frac{\partial f}{\partial x^{\prime}}\right| \leqslant M$ on D
(3)
and

$$
\text { B) } \begin{aligned}
& \left|c_{11}\right|+\left|c_{12}\right|>0 \\
& \left|c_{21}\right|+\left|c_{22}\right|>0 \\
& \left|c_{11}\right|+\left|c_{21}\right|>0 \\
& c_{11} C_{12} \leqslant 0 \leqslant C_{21} C_{22}
\end{aligned}
$$

Topics covered in Midterm 2

* Everything till now.
* Focus on:
* Multistep methods
- Adams - Bashforth
- Adams-Moulton
- Explicit/implicit
* Error Analysis
- convergence/stability/consist.
- Truncation error
* Systems \& IVigher order ODE's
- Taylor series methods
- Other methods
- BUP's:. Existencel Uniqueness
- Shooting Methods
* Linear LEs
- Secant/Nenton
- Finite Differences

